MPI BASICS

George VandenBerghe
IBM

June 20, 2005

Topics

. Introduction

. simple example

. Point to point messages

. forground v.s background (or blocking v.s. nonblocking)

. collectives (broadcasts, gathers, reductions, barriers, exchanges)
. Environment settings

. performance

. debugging

Other materials

. Presentation on ibmdocs/userman/mpiuse.pdf

. IBM Practical MPI Programming redbook

(google ibm redbook mpi programming for a
link)

. MPI Programming and Subroutine Reference (on
ibmdocs, use for binding reference)

. Using MPI Gropp, Lusk and Skjellum 1999 MIT
Press (should be at Amazon)

Examples

. An cxample of a reduce is in
/nfsuser/g02/courses/mpi/reduce.f

. An example of a scatter, transpose, gather is in
/nfsuser/g02/courses/mpi/coll.f

. Will work on a simple halo exchange but not
ready for 6/20. This will be in laplace.f

. A sample LL job 1s in /nfsuser/g02/courses/mpi/]

Why MPI?

. Size and cost of algorithms has grown even faster than cpu speed.

. We need to use several cpus in parallel to get our speeds (several

can be ~1000).

. One paradigm is for one program to spawn additional threads and

break up array operations or other large chunks of work among
threads.

. Standard for this is OPEN_MP.

. With OPEN_MP you run one program and it sends work to other

cpus.

. This does not work over networks or switches (at least today)

Why MPI?

With MPI you run N programs on N cpus and they
communicate with each other through MESSAGES.

This does work across networks (even WANSs if comms
are small and few). With current switch and cpu metrics
scalability up to about 1000 tasks™ 1s readily achieved
for weather, physics, and CFD problems.

Both OPEN MP and MPI can be used in the same
program. MPI tasks on N multicpu nodes are sped up
by making OPEN_MP parallel regions.

What 1s MPI

MPI is a message passing API (applications programming interface)
It has become the standard and all major vendors support it.

MPI jobs consist of numerous executing programs (or copies

of the same program) which execute

concurrently and communicate with each other at intervals.

These are called TASKS

Information from other tasks is used as data for a given

task or to control its flow.

Communication is done through calls to communication routines in
the MPI library.

Communication is very visible in your program's source. Forced
visibility has the advantage of focusing attention on a code's major
cost points.

What 1s MPI

At low levels there are only a few primitive operations.
“send $this much to $somewhere”
receive $this much from $somewhere.

The other MPI calls are built on top of these or provide diagnostic
information.

Most users work at a higher level of abstraction.
(Add this array across all tasks, exchange this with all tasks,
collect all tasks arrays to this task, synchronize tasks,)

HARDWARE SUPPORT

. MPI can run on heterogeneous networks of
machines of different types but in practice this 1s
extremely rare.

. All usc at NCEP 1s on clusters of individual
machines of the same type connected by either a
high speed communications network (the IBM
supercomputers) or some kind of bus or crossbar,
(some linux clusters, SGI) or sharing memory
(IBM,SGI,CRAY, others)

RESOURCE USE

. When you run an MPI program as N tasks, you have the N epus
for the time the program is running.

. For efficiency they all need to have about the same amount of
work to do.

. Departure from this is called LOAD IMBALANCE. Fast tasks
wait for slow ones to catch up or finish.

. This is a major impediment to both scalability and dynamic
scheduling. MPI programs must not time slice unless the whole
gang time slices together.. only recently supported and still
difficult to tune.

. Charging algorithms often charge for the time you have a job slot
whether the cpu is active or not. No one else can safely use it
while your job is active.

HARDWARE SUPPORT

. NCEP programming paradigms assume point to point
speeds >100mb/sec, and comms rates independent of
other activity on the fabric (how fast you go doesn’t
depend on what someone else 1s communicating). The
MPI libraries were also written for that kind of platform.

. On the IBM clusters, two tasks on the same node
communicate through memory. Tasks on different
nodes communicate through the communications fabric
or switch

HOW FAST?

Point to point stream rates varied from 130mb/sec on asp/bsp
in 2001, to 4gb/sec. on blue/white.

Small message latency declined from 25us to 10us over this time.

This compares with single stream memory bandwidth of 1000mb/sec
and latency of 0.2us to memory.

When communicating we stream at appoX. memory rates but
latency is 50x or more higher (usually much higher)

HOW FAST?

Weather models are mostly bandwidth constrained.

Bandwidth even on the old systems was sufficient. Today

we have plenty and it's not an issue. These metrics

may vary on other vendors offerings. HPC industry experience has been
that customers like latency but buy bandwidth.

The two basic methods of PE integration are finite differences
and spectral transform.. term evaluation.. inverse transform.

Both scale to ~1000 tasks with our switch metrics. This
1s also true for other vendors. The problem maps

well to this programming paradigm.

Scaling issues deferred to a later slide.

High level operations

Send arrays to and get arrays from other tasks (point to points)
Broadcast from one task to all of the others

Collect from all tasks to one.

Transpose problem domain.

Synchronize tasks.

Add (actually perform any reduction) across tasks.

After some experience you'll think in terms of these
high level operations rather than the code underneath.

Note I/O is outside the scope of MPI-1 {the most common

standard today). It is done by one or more tasks with user

algorithms. The quickest to understand is read on one

task.. broadcast or scatter to everyone; gather from everyone

then write from one.

Later (MPI-2) has a distributed I/O API but is outside scope of this class.

High level operations

For all MPI problems you break your problem into chunks that can
run in parallel. This is a design or conversion issue. The process is
called DECOMPOSITION

Finite difference problems operating on a 2D or 3D grid, break the grid into
subsets and each task operates on a subset.

A special case of this 1s where one dimension is equal to the number of tasks and
there are no comms along that direction. Then each processor gets a slice of the
domain. In the more general case each processor gets more than one slice (few
tasks) or has to further split slices (many tasks).

Quickly implemented codes hardwire the subgrid sizes and must run on a fixed
number of tasks. Debugging 1s a little easier this way and it’s not a bad way to
get started.

Most production codes can run on varying number of tasks and the domain
decomposition is done dynamically (GFS) , or with parameters included at
compile time (NAM, george’s primitive 1D RSM). This is usually worth
spending the time to add in.

High level operations

The older GFS splits vertical levels between the tasks in spectral space. In
cartesian space it breaks the horizontal domain inte subdomains which have all
levels but only a few latitudes and longitudes. The problem domain must be
transposed (simple, presented later) to switch between these two decompositions.

The newer GFS decomposes by wavenumber and each task gets one or more
wavenumbers.

Both the grid point partitioning and the GFS partitioning are exampled of
DOMAIN DECOMPOSITION.

A second decomposition is FUNCTIONAL decomposition. Simple case 1s one
processor does ocean and one processor does atmosphere in a coupled model
(more generally many do the atmosphere and a few do the ocean part).

A second example 1s a model and post processor(s) running together with post
processors getting forecast K from the model and processing it while the model
timesteps to K+T where T is forecast interval. A subset of this sending all of the
data to one processor which JUST does I/O 1in the background while the
remaining processors integrate.

Numbering conventions

. MPI tasks start from task O, a four task job will
spawn tasks 0,1,2,and 3.

A simple
:Ef;;::l: S'?gifl;ﬁs(mpiistamsisize) p ro gram

integer itag
call mpi_init(ier)
a=0
itag=1047
call mpi_comm_rank(mpi_comm_world,nrank,ier)
print *" hello world from task ',nrank
if(nrank .eq. 1) a=99
if(nrank .eq. 1)
1 call mpi send(a,1,mpi real,5,itagmpi comm world,ier)
if(nrank .eq. 5)
1 call mpi recv(a,l,mpi real,l,itagmpi comm_ world,STATUS,ier)
print *' A is \a,' AT TASK 'nrank
call mpi_finalize(ier)
stop
end

This program sends a message from task 1 to task 5 and prints from
all tasks to show the value of a variable in each task.

program fl MPI COMM_WORLD is
include 'mpif.h' 1 .
integer STATUS{mpi_status_size) an MPI Communicator.

iI‘lthCI" itag MPI communeators define groups of tasks. Mty MPI codes have just

call mpi_init(ier) subset of your tasks and operate on them only. Coupled atmos-ocean
a=0 models do this.. In elementary and mtermediate codes this is just an extra
itag,ﬁ 1047 argument you reed to prt 51 mast calls.

call mpi_comm_rank(mpi_comm_world,nrank,ier) MPI_REAL defines the type of data you will

print *," hello world from task ',nrank
if(nrank .eq. 1) a=99
if(nrank .eq. 1)
1 callmpi send(a,1,mpi real,5itagmpi comm world,ier) STATUS ic scratch
if(nrank .eq. 5)
1 call mpi_recv(a,1,mpi_real,1,itag,mpi_comm_world,STATUS,ier) space used by mpi_receives.
print *' Ais'a, ' AT TASK 'nrank
call mpi_finalize(ier)
stop
end

send/receive.

mpifh brings in various MPI defaults and data structures MPI needs
mpi_init creates the comms infastructure

mpi_comm_rank, tells which task you are

mpi_send sends a message

mpi_recv receives a message

mpi_finalize cleans up, flushes buffers and exits tasks.

one, the defindt MPI COMM WORLD.I is passible to create athers from a

call mpi_send{a,1,mpi real,$,itag,mpi comm world,ier)

a is the variable (beginning address) you send.
1 is the length (number of words) you send
mpi_real is the type of data you are sending

5 specifies where you are sending to (task 5)
itag specifies the message number (1:32K). This
is used by the receiver to separate this message from
others in the queue. It must be unique in the queue (not
a problem usually)
MPI COMM WORLD defines a group of tasks (it is
defined in mpif.h and is the default for mpi calls. You
can make others but for now just treat it as an extra
thing you need.
1 call mpi_recv(a,1,mpi_real,l,itag,mpi_comm_world,STATUS,ier)

10

call mpi_send{a,1,mpi_real,3,itag,mpi_comm_world,ier)

a 15 the variable (beginning address) you send,
- 1isthe length (number of words) you send
- mpi_real is the type of data you are sending

5 specifies where you are sending to (task 3)
itag specifies the message number (1:32K). Thus 15 used by the receiver to separate this message from
others in the queve. It must be urique inthe queue (not a problem usually)
- MPIL COMM_WORLD defines a group of tasks (it 1s
defined in mpif.h and is the default for mpi calls. Tou
can make others but for now just treat it as an extra
thing you need

1 call mpi_recv(a,1,mpi_real,l,itag,mpi_comm_world,STATUS,ier)

These areuments match the send's except for STATUS. STATUS is

scratch space dimensioned MPI_STATUS_SIZE (specified in mpif.h)

used internally by the receive libraries. Just dimension it and

put it in the argument list. It's another “extra” but unlike MPI_COMM_WORLD

there is no user need to ever work with it.

Note the send sent to task 5. The receive gets from task 1. (fourth argument).

More about point to points

For each point to point comm there are two tasks,
the sender and receiver.
There is also the unique tag to identify the messages

at the receiving end.
If a sent message is not received or a receive is called

for an unsent message, the task hangs. This mistake is

Very common.
Hangs also occur if the tags don't match.

If the conditional send is removed from the simple program,
task 5 will complete when it gets the task 1 message. Most
others will hang at the send to 5 which is not looking for
these other messages. Task 1 will hang at the receive.

11

The fundamental comms operation in grid point models is
point to point send/receives of fairly large messages.

Grid point models evaluate finite difference operators
to define spatial derivatives.

Each task takes a portion of a grid.

Finite difference operators on portion edges are not
possible

Problem is solved by replicating neighbor edges.. these

are often called HALLOs. The replication is done by

sending the edge row or column to the neighbor task

and in turn receiving that task's edge information. For a grid each task
needs a side from each of its four neighbors.

The rest is bookkeeping!

Halos or ghost points

Consider 16x16 domain
Each subdomain 1s 4x4 on 16 processors

To evaluate finite differences at border points we need
the neighbor borders.

. Subdomain arrays are dimensioned 0:5,0:5
. Row zero 1s populated by neighbor below’s row 4
. Row 5 1s populated by neighbor above’s row 1

. Same 18 done for columns. Fiite differences can then
be done from 1:4.1:4 on all subdomains

12

Blocking v.s nonblocking

The previous sends block. Consider
Task 1 task 5

Call mpi_send(.,...,5,.,...) call mpi_send(.,.,..1,.,.,.)
Call mpi_reev(.,.,..5,.,,-,.) Call mpi_recv(.,.,.,1,.....,.)

The send to 5 will not retumn till 5 has gotten the message. 5 won’t process
The message till the send to 1 returns which won’t happen till 1 gets the message.
But 1 can’t process the message because it 1s waiting for 5 to receive.

This 1s called a DEADLOCK.

Blocking v.s nonblocking

One way to avoid this is to use nonblocking send/receive. The send queues the array for
eventual sending and continues or the receive spawns a request to look for a message
and get it when it appears. Usually only one side needs to be nonblocking

Task 1 task 5
call mpi_isend(.,.,.,5,.,.IR,.) call mpi_isend(.,.,.,1,....IR,.)
call mpi_reev(.,....5........) call mpi_recv(.,.,..1..,.....)

IR here is a request handle. It is set in the MPI libraries and is OUTPUT for the
nonblocking send/receives. It is needed to test for completion of the nonblocking
operation. You MUST make sure it is complete before doing anything with the
variable being sent (overwriting or deallocating it), or received (using, overwriting or
deallocating it). This is done with

MPI_WAIT(ir,status ier) where status is an array of the same size as the status in mpi_recv
or with a following blocking call communicating with the same task the nonblocking
call did (the latter is common). The above simple code does not need a test but when in
doubt include it.

13

Blocking v.s nonblocking

MPI_SEND is NOT guaranteed to block. Small messages are copied to a buffer.
You are guaranteed to be able to use the sent variable or delete it after MPI_SEND
returns control. { The MPI SSEND call is guaranteed to block until the message is sent.)

It is also possible to communicate in the background while computing.
Call mpi_isend(....... j]

Compute.. Compute

Call mpi_wait{...)

This is more useful on machines with dedicated comms processors. On owrs, the interrupts
from MPI use of the cpus are expensive and it’s often best to just communicate and then
compute after comms are done.

Collectives

. Operations so far have acted on a single pair of tasks. (still fast
because the N tasks, do their comms concurrently).

. Asecond large class of operations is COLLECTIVES. These
perform the same operation on all tasks and block on all tasks until
the last task starts the operation and satisties other tasks’ internal
implementation prereqisites. You don’t need to know these
prerequisites, the MPI library writers dealt with them. But
collectives do NOT block until all are finished however it’s
usually pretty close. For most purposes you can think of them as
blocking.

. Every task in the group has to call the collective or the mpi job
hangs at the collective call. Watch out for collectives in
conditional code!

14

Collective examples

. MPI_BCAST
. MPI_SCATTER

. MPI GATHER
(MPI_ALLGATHER,MPI_GATHERV)

. MPI BARRIER

. MPI ALLTOALL (MPI ALLTOALLYV) (this
one 1s core of GFS comms)

. MPI_REDUCE.

MPI BARRIER
. MPI BARRIER(comm,ier).

. This one 15 used to sync all tasks. Contrary to common
belief it is VERY CHEAP. However any algorithm load
imbalance will surface as barrier time for all but the slowest
task. Requirement for syncing is what creates the cost .
Example!

. Taskl(fastest) taskS(slowest)
. Call relax(a)(25sec) call relax(a) 75 sec
. Call mp1_barrier(..)50sec call mpi_barrier()Ims

. You've lost 50 seconds of compute time on task 1.
. Often used with timers to DIAGNOSE load imbalance

15

Collectives

Consider
if(ntask .ne. 5) then
call mp1_ barrier(mpi_comm_world, ier)
endif

All of the barrier calls will hang except in task 5 which will

run to the next collective or mpi_finalize (and hang
there). 5 didn’t enter the collective so everyone else
stuck waiting for it

MPI BCAST

. MPI_BCAST(array,num,datatype,root,comm,ier)
. Array is the data to replicate on all tasks,

num is the length (number of words) to send, datatype specifies

real, integer, character, ..,..,
. Root is the task number that initially has the data

. Comm is the communicator name (MPI COMM_ WORLD in
this class)

. Ier is an output error status.

. This broadcasts “Array” imtially on task “root” to all tasks.

. Don’tuse a send loop to do this. Broadcast cost is log(N) while

sendloop cost is N. [have found send loops even in well
worked over benchmarks!

16

MPI SCATTER

This takes an array and scatters it in chunks to the various other
tasks.

MPI_SCATTER(full _array.len,datatype,task arraylen,datatyp
e,root,commiier)

One common use is reading a full domain on one task and sending
the subdomains each task will handle to the various tasks.

MPI SCATTERYV supports chunks of varying sizes.

MPI SCATTERV((full arraylen_array,disp_array,datatype,
task array.len,datatype,root,comm,ier)

disp array contains displacements in full array. The displacement
for task N defines how many words after full array(1) to begin the
send, and len_array(n) defined the number of words to send.

MPI GATHER

. MPIL_ GATPER(array,num,datatype,arrayall,num,datatype,root,comm,ier)
. Array is the remote array on the tasks

. num is the length (number of words) to receive,

. datatype specifies real, integer, character, ...,

. Arrayall is the array to contain all data from all tasks. Num and datatype are
duplicated in next two args.

. Root is the task number that is gathering all of the data (perhaps to write to a file)
. Comm is the communicator name (MPI COMM_WORLD in this class)

. ler is an output error status.

. This gathers “Array” from all tasks to a much larger (num®*ntasks) master array.
. MPI ALLGATHER is similar but populates arrayall on ALL tasks.

- MPI REDUCE is sometimes used on a problem size data structure with all nontask
parts zeroed out. This indeed generates the entire domain but 1s more expensive
than a gather.

17

MPI ALLTOALL

. MPI_ALLTOALL(dataout,len,datatype,
datain.len,datatype,comm,ier)

. This sends slices of dataout to all tasks and
gathers slices of datain from all tasks. This is
useful in full domain transposes and is best
illustrated by example.

COLLECTIVES

MPI_ALLTOALLC(dataout,len,datatype Datain,len,datatype,.comm,ier)

Consider a 64 level domain decomposed by level on 64 processors {T(256,512,64)}
There are 256 lats and 512 lons. Each task does one level This is ideal for parallel FFT
dataout maps to T(256,512,L)

You need vertical communication to do your physics. Change decomposition to lon,lev.
datain maps to T(256,lon:lon+7,64).

Task 1 sends 512,1:8totask 1, 512.9:16to task 2

Task 1 receives 512,1:8,1 from 1 then 512,1:8,2 from 2.

Task 1 is sending all 512 lons of level 1 in 8 lon slices to the 64 tasks.

Task 1 is getting lon 1-8 from all levels from the 64 tasks

After physics, this transpose is inverted to go back to level decomposition.

This is the core of spectral model comms although there each task does some lats and some lons for

load balance. That requires building a buffer before alltoall is called.. Newer GFS decomposes by
wavenumber but the dominant communication is still an alltoall to do a transpose

COLLECTIVES

. There1s an MPI ALLTOALLYV similar call that
moves different amounts of data to each processor
and receives different amounts from each
processor. MPI GATHERYV also gathers data
with tasknumber dependent lengths.

COLLECTIVES MPI REDUCE

. MPI REDUCE does summations and other reductions
across tasks.

MPI_REDUCL(array,arraysum,len,datatype,Q P.root,com
m,ier)

OP 1s an input integer mapping to an operation

THESE ARE DEFINED IN mpif.h or you can make your
OWI.

MPI_REDUCE_SCATTER scatters arraysum to the
different tasks. It 1s analagous to calling
MPI_SCATTER on arraysum.

19

REDUCTION OPERATORS

MPI_ MAX max

MPI_ MIN min

MPI SUM sums
MPI_PROD multiplies

MPI_LAND MPI LORMPI BOR,MPI LXOR,
MPI BXOR logical operations.

[/O

Each task can handle files independently. Stdin, stdout and stderr are special cases
which are handled as a single stream by all tasks.

Often one task handles the I/O and communicates with the others to get/send the relevant
data.

Read, scatter, integrate, gather, write is common scenario.
Some codes write their subdomains to task specific files. Collection is done later offline.

/O often blocks scaling beyond ~100 tasks until addressed and optimized.. Then nota
big issue.

Two primitive optimizations are to write all subdomains in parallel and to send all data
to be written, to a special task at switch speeds and then have that task write to disk or
network in the background. Both NAM and GFS do the latter.

MPI-2 standard includes the concept of MPI_I0, collective operations on data
distributed across tasks. This is the most likely part of MPI 2 to be implemented at a
transitioning site but it’s beyond scope of this talk.

20

UTILITY CALLS

. MPI COMM_RANK(comm,nrank.ier) tells
which task you are

. MPI_ COMM_SIZE(comm,ntasks.ier) tells how
many tasks there are.

. MPI_GET PROCESSOR_NAME(char, len,ier)
returns the machine name for each task in a
character variable of length len.

COMPILING AND RUNNING

« On the IBM machines the MPI compilers are

« MpxIf,mpx190.mpx195. mpx1f rmpxIfO0 rmpxlf95 r. On
blue/white we also have these with the “ncep” prefix e.g
ncepmpxlf.

« These bring in the needed includes or modules and libraries.
They are wrappers around the fortran compiler and loader with
the many additional options needed to build MPI programs
hidden from the users.

. mpxlf f.f1s all you need to do. On other systems consult local
documentation

21

COMPILING AND RUNNING

. To run a small number (say 4) of MPI tasks
interactively

. 1. export MPI PROCS=4; export MP_ RMPOOL=I
. 2. ./a.out <input >output 2>err

. MPI collects the prints from various tasks and streams
them all to stdout and stderr. MPI also reads stdin and
broadcasts to all tasks so vou don’t need to worry
about that little detail.

RUNNING

. For larger MPI jobs vou need LoadLeveler, the IBM
batch node scheduler.

. One typically asks for a number of tasks on a smaller
number of nodes, specifies stdout location and job
class and submits the job.

. Consult ibmdocs.ncep.noaa.gov for LoadLeveler
documentation but a few examples will be presented
here.

22

RUNNING

LL job (minimal}
#1/bin/ksh
#anetwork MPI=csss,shared,us
#@ job_type=parallel
#@ class=dev ! Classes are 1 and dev for most users. Dev uses most of the machine. I is interactive
#@ total_tasks=20
#@) wall_clock_limit = 01:02:09
#@ node=10
#@ queue
{setup} € --- this is the commands necessary to set up inputs for a.out
Ja.out

exit

RUNNING

All of your LL job command except for explicitly
parallel ones run SERIALLY on one node. In the job
above only your a.out will run on all of the nodes.

To submit the job do

llsubmit $file where $file contains the directives and
script to be run. It will be queued for scheduling,

The llsubmit path 1s /usr/lpp/LoadL/full/bin

23

RUNNING

LL johb (roinitoal)

#/hinfksh

#{1) output=o

specifiec location of stdout

#{0 error=¢ specifies job stder location Chere e)(I like short names)

#{0 job_type=parallel

#@network WP I=csss,shared us

#@@ class=dev (devis for hig jobs, 11z for small and interactive)

#{@ total_tasks=10

#@ wall_clock limit = 01:02:00

#H@ task_geometry={ (1,903,11(2,4) Rearranges task layout on processors

#{) node=10

##ED blocking=unlimited allocates tasks wherever there are slots

#{. queue

{setup} & - this is the comemands necessary to set up inputs fora owt

fa ot

exit

VERY USEFUL ENVIRONMENT
VARIABLES

Set MP_LABELIO=yes. This prefixes task number to
cach line of stdout and stderr so you can see which task
printed it.

Set MP_ RETRYCOUNT to 30 or so and

MP RETRY=25 or so. Interactive jobs will then try
every 25 seconds for up to 30 tries to get nodes. (default
1s O for retrycount so 1f interactive nodes aren’t available,
you just error out). (irrelevant in LL jobs.)

For interactive jobs MP_ RMPOOL must be set to 1.

MP _EAGER_LIMIT controls buffering and 1is useful for
debugging (0 no buffering is of special interest)

24

TIMING COMMS

. To find out how long a call is taking insert a time
call before and after (low level)

Tl=rtc()

Real(kind=8)rtc,t1,t2

Call mpi_all2all()

T2=rtc()

Call_time=(t2-t1) .. This is in seconds.

TIMING COMMS

You can get a summary of MPI activity and time consumed by
linking with

-lmpitrace in your load parameters e.g

Mpxlf your.code —Impitrace

This produces N reports in mpi profile.tasknum, one per task.
These

Are in your current working directory.

25

SCALING

MPI BCAST logN
Sendloop to broadcast (N)
MPI _SCATTER constant

MPI GATHER constant
MPI ALLGATHER,MPI GATHERYV)2constant

MPI BARRIER epsilon*n

MPI ALLTOALL (MPI ALLTOALLV) (this one is core of GFS
comms) 1/n

MPI_REDUCE. 1/nlogn (??)

I/n implies perfect scalability constant implies no scalability, N
implies time grows linearly with taskcount

MPI WRAPPERS

. These are a too little known part of the standard.

. Originally developed to support tracing and profiling libraries
(example PALLLAS Vampir and our mpitrace libraries).

. Also useful for debugging.

. You write a subroutine with the same binding as an MPI routine
and give it the same name (e.g mpi_send).

. This routine after setting a timer or checking arguments, calls
PMPI SEND with identical binding.

. Each MPI routine has a second entry name with a P prefix.

26

Debugging

. Hangs??
Use prints to determine hang point.
Check for point to point send/receive mismatch.

This could be lack of the call at all, a tag mismatch
or a processor number mismatch.
Check for conditional code in barriers.

(usually the one that DOESN’t call the collective progresses further
and hangs at the next collective.

Debugging

. Hangs??

. Sometimes hangs occur well after an incorrect
send/receive pair if buffering i1s done.

. MPI Standard does not address buffering schemes

. MP_ EAGER _LIMIT controls buffering. Set to 0
to disable buffering (but then expect a slowdown)

Hangs then occur at the trouble point.

27

Debugging

. Segmentation faults

. Usually indicate the array you are receiving is too short and the

incoming data stream is overwriting other stuff.

. Also happens from argument mismatches and it can be subtle if

the datatypes don’t match.

. Also happens in nonblocking calls when the array to be

sent/received is deallocated before completion. Exiting out of the
routine that made the call before completion can cause this.

. Sometimes happens deep in the MPI libraries from load

imbalance. Inform sysadmins of these and also reduce the load
imbalance

Debugging

“Terminated” messages. Usually means either the job
ran out of time or another task exited with nonzero retum
codel ALL tasks are sent a signal 15 (kill gently) if any
one exits with nonzero retum code.

Don’t use fortran STOP nn where nn 18 a nonzero
number.

You must call MPI_FINALIZE from all tasks otherwise
your I/O buftfers won’t flush and your output files may
be incomplete. Call MPL ABORT in place of a stop and
don’t call MPI FINALIZE in conditional code.

(call mpi_abort(mpi comm_world,ireturn,ier)

28

Debugging

. Send inquiries to ncep.list.sp-support(@noaa.gov
or usc ticket system 1n http://ibmdocs/hd.

- App person 1s george.vandenberghe@noaa.gov
301-763-8115x7119

Performance considerations

Don’t oversubscribe the cpus (running more tasks
than cpus on a node or product of
taskcount™threads/task >cpus on a node.

Try to pass data as a few large messages rather than
many small ones

If you use threads, run with
#@nodc usage = not_shared

This 1s especially important if you run a lot of tasks.

29

Performance considerations

. Be careful to make sure each task has about the same

amount of work. If not Load Imbalance will waste cpus.

« 'This is admittedly not always easy (convective hot spots
in physics are one example)

. VERY large numbers of tasks may benefit from running
n-1 tasks per node rather than N where N is cpu count on
the node.

. Running fewer tasks gets faster turnaround and is more
efficient (if you have the wall time)

Examples

. An cxample of a reduce is in
/nfsuser/g02/courses/mpi/reduce.f

. An example of a scatter, transpose, gather is in
/nfsuser/g02/courses/mpi/coll.f

. Will work on a simple halo exchange but not
ready for 6/20. This will be in laplace.f

. A sample LL job 1s in /nfsuser/g02/courses/mpi/]

30

